366
23 Biogeneration of Valuable Nanomaterials from Food and Other Wastes
3 Duque-Acevedo, M., Belmonte-Ureña, L.J., Cortés-García, F.J. et al. (2020).
Agricultural waste: review of the evolution, approaches and perspectives on
alternative uses. Global Ecology and Conservation 22 (2020): 1–22.
4 Romero, G. and Moya, S.E. (2012). Synthesis of organic nanoparticles. In: Fron-
tiers of Nanoscience, vol. 4 (eds. J.M. de la Fuente and V. Grazu), 115–141.
Elsevier.
5 Torres, T. and Bottari, G. (2013). Organic Nanomaterials: Synthesis, Characteriza-
tion, and Device Applications. Wiley, ISBN: 978-1-118-01601-5.
6 Virlan, M.J.R., Miricescu, D., Radulescu, R. et al. (2016). Organic nanomaterials
and their applications in the treatment of oral diseases. Molecules 21 (2): 207.
7 Hussain, I., Singh, N.B., Singh, A. et al. (2016). Green synthesis of nanoparticles
and its potential application. Biotechnology Letters 38 (4): 545–560.
8 Baiano, A. (2014). Recovery of biomolecules from food wastes—a review.
Molecules 19 (9): 14821–14842.
9 Ghosh, P.R., Fawcett, D., Sharma, S.B. et al. (2017). Production of high-value
nanoparticles via biogenic processes using aqua-cultural and horticultural food
waste. Materials 10 (8): 852.
10 Xu, H., Wang, L., Su, H. et al. (2015). Making good use of food wastes: green
synthesis of highly stabilized silver nanoparticles from grape seed extract and
their antimicrobial activity. Food Biophysics 10 (1): 12–18.
11 Kumar, R., Roopan, S.M., Prabhakarn, A. et al. (2012). Agricultural
waste Annona squamosa peel extract: biosynthesis of silver nanoparticles.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 90 (2012):
173–176.
12 Silva Viana, R.L., Pereira Fidelis, G., Jane Campos Medeiros, M. et al. (2020).
Green synthesis of antileishmanial and antifungal silver nanoparticles using corn
cob xylan as a reducing and stabilizing agent. Biomolecules 10 (9): 1235.
13 Foujdar, R., Chopra, H.K., Bera, M.B. et al. (2020). Effect of probe ultrason-
ication, microwave and sunlight on biosynthesis, bioactivity and structural
morphology of Punica granatum peel’s polyphenols-based silver nanoconjugates.
Waste and Biomass Valorization 22: 1–20.
14 Yang, N., Wei Hong, L., and Hao, L. (2014). Biosynthesis of Au nanoparticles
using agricultural waste mango peel extract and its in vitro cytotoxic effect on
two normal cells. Materials Letters 134: 67–70.
15 Patra, J.K., Kwon, Y., and Baek, K.H. (2016). Green biosynthesis of gold nanopar-
ticles by onion peel extract: synthesis, characterization and biological activities.
Advanced Powder Technology 27 (5): 2204–2213.
16 Chums-ard, W., Fawcett, D., Fung, C.C. et al. (2019). Biogenic synthesis of gold
nanoparticles from waste watermelon and their antibacterial activity against
Escherichia coli and Staphylococcus epidermidis. International Journal of Research
in Medical Sciences 7 (7): 2499–2505.
17 Ishak, N.A., Kamarudin, S.K., Timmiati, S.N. et al. (2020). Biogenic platinum
from agricultural wastes extract for improved methanol oxidation reaction in
direct methanol fuel cell. Journal of Advanced Research 28: 63–75.